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Deep Learning Works for Scientific Problems

DL@15 PF, SC17

False Positive Rate

CosmoFlow, SC18
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e results from ML@NERSC user survey
e various levels of sophistication

What type of models do you use?
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User models' training scales
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e large range of scales (with significant number of users training at more that 100 nodes)
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Dataset sizes and HPO
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e (dataset sizes can be significant
e HPO-tools desired by large fraction of participants
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Finding a (good) performance metric

« throughput metric (e.g. samples/sec, time/sample, flops/s)
— very easy to define and understandable
— measures improvements in HW and SW stack (if training algorithm is kept fixed)
— for inference workloads accurate in predicting speedup
— for training workloads not necessarily related to time-to-solution

« time-to-solution (e.g. wallclock time to reach certain accuracy/loss)
— relevant to DL practitioners, speedup numbers actually have a meaning
— hard to define, e.g. what target score are we aiming at (problem dependent)
— might mingle architectural advantages with HP optimization efforts
and algorithmic advances/modifications

* time-to-solution+HPO (including architectural modifications, i.e. genetic algorithms)
— includes important HPO and thus measures SW readiness/support
— very hard to define target metric, e.g. what is the best network, best accuracy you can
overall get, etc.

* energy/sample for inference workloads
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Time-to-solution is challenging

kn=256, n= 0.1, 23.60%x0.12
kn=32k, n=12.8, 27.55%x0.28B
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https://arxiv.org/abs/1706.02677

Well designed benchmarks NeR

« relevance: use state-of-the-art models/building blocks (DL community is very swift!)
« capacity (HPO), capability (batch-, domain/model-parallel training) and hybrid workloads
« measure IO performance of the file system
— cover a variety of different input file and data formats
— stress-test modern file system features (e.g. BurstBuffer, node-local NVMe, etc.)
« architectural coverage?
— modern models are too big to fit into RAM of old GPUs and model/domain parallel
frameworks are not very common
« framework-agnostic?
— landscape changes quickly, enforce open exchange formats (ONNX)?
« define HPO selection guidelines/table for arbitrary batch size along with target score
numbers on reference architectures
« DL training is non-deterministic: include tolerance/Cl for scoring metrics
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