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OUR EXPERIENGE SCALING DEEP LEARNING: o
DEEP LEARNING AT 15PF * b

Joint work between NERSC, Stanford University and - |
Intel on Cori Phase || http://www. nersc. gov/users/computatlonal systems/con/conflguratlon/

Novel approach to distributed SGD: synchronous Compute group 1 Compute group G
within the group, asynchronous across the groups
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* https://dl.acm.org/citation.cfm?id=3126916



WHAT SHOULD WE NEED TO CONSIDER IN A LARGE-SCALE DL BENCHMARK

» Clearly state the goal: Ranking the * Proxy of a real-world, forward-looking

compute infrastructure goodness application

* Scale matters — 1000s of nodes - Not another ImageNet ©

» End-to-end time-to-train to a given * Challenging enough DL training with
level of accuracy spelt-out network and dataset

e Consider TCO as well » Allow flexibility of data-model

parallelism, inter-node communication,

* Include public cloud — now offering precision, etc.

millions of cores
 All such need to be disclosed

* Open source code, reproducible results



TREND1A:
NEURAL NETWORKS GETTING AUGMENTED
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Front end: Machine Leamning module Back end: CeNN PDE solver

Hybrid learning of with neural networks and coupled dynamic
system (PDEs) for heat dissipation and fluid dynamics [1]

Combination output layer P .

p = sigmoid(Wy, e Tuack + ’H"““)T

Large embedding tables
| mapping sparse

| feature vector to

dense vectors -

..... | Requires several TBs

of memory [3]

Embedding and stacking layer

Memory needed to perform Turing-complete operations. DeepMind
work on differentiable memory [2] iG-S
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TREND 2:
FOCUS SHIFTS FROM PATTERNS TO ANOMALIES

CYBER-SECURITY ~ REAL-TIMEMONITORING ~ AUTONOMOUSDRIVING  DATA CENTERS
SOCIALMEDIA  INTERNET OF THINGS (10T)  DATAANALYTICS WEATHER | ASTRONOMY

Anomaly Detection Is Everywhere




NEW EVALUATION MODEL

Expressive, Flexible, Extensible

= Superset of:
— Classical model
— Other state-of-the-art evaluators (NAB)

= NIPS ‘18 Spotlight

= Other NIPS'18 Highlight:

— Intel for the first time in the league of
>1% of accepted paper affiliations

NIPS ’18 (Spotlight): https://arxiv.org/abs/1803.03639 (non-camera-ready version)
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Abstract

Classical anomaly detection is principally concerned with point-based anomalies,
those anomalies that occur at a single point in time. Yet, many real-world anomalies
are range-based, meaning they occur over a period of time. In this paper, we present
a new model that more accurately measures the correctness of anomaly detection
systems for range-based anomalies, while subsuming the classical model’s ability
to classify point-based anomaly detection systems.

1 Introduction

Anomaly detection (AD) is the process of identifying non-conforming items, events, or behaviors.
The proper identification of anomalies can be critical for many domains. Some examples are early
diagnosis of illness and disease [18], threat detection for cyber-attacks [3], or safety analysis for self-
driving cars [29]. Many real-world anomalies can be detected in time series data. Therefore, systems
that detect anomalies should reason about them as they occur over a period of time. We call such
events range-based anomalies, which are a subset of both contextual and collective anomalies [9].
More precisely, a range-based anomaly is an anomaly that occurs over a consecutive sequence of time
points, where no non-anomalous data points exist between the beginning and the end of the anomaly.
The standard metrics for evaluating anomaly detection algorithms today, Recall and Precision, have
been around since the 1950s, originally formulated to evaluate document retrieval algorithms by
counting the number of documents that were correctly returned against those that were not [7].

Formally defined as follows, Recall and Precision are a good match for single-point AD [1] (where
TP,FP, FN are the number of true positives, false positives, false negatives, respectively):
Recall =TP + (I'P + FN) (1)
Precision =TP + (I'P + FP) 2)
Informally, Recall is the rate at which a system can identify anomalies without mispredicting any
anomalous events. Precision is the rate a system can identify anomalies without mispredicting
non-anomalous events. In this sense, Recall and Precision are complementary. This characterization
proves useful when they are combined, such as in the F; score, which is their harmonic mean. Such
combinations help gauge the quality of both anomalous and non-anomalous predictions. While
useful for point-based anomalies, classical recall and precision suffer from the inability to represent
domain-specific time series anomalies. This has a negative side-effect on the advancement of AD
systems. In particular, many time series AD systems’ accuracy is being misrepresented, because point-
based recall and precision are being used to measure their effectiveness for range-based anomalies.
Moreover, the need to accurately identify time series anomalies is growing in importance due to the
explosion of streaming and real-time systems [2, 6, 14, 23, 28, 31]. To address this, we redefine recall
and precision to encompass range-based anomalies. Unlike prior work [2, 21], our mathematical

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.



TREND 3: MOVING BEYOND PERCEPTION
FOCUS SHIFTS FROM SPARSE AND GRAPH ANALYTICS

Many Big Data sets can be represented as a graph: Social networks, IP network
traffic, road networks, physics models, etc.
Graph analytics can reveal interesting information:
detecting patterns and clusters, shortest path calculation,
search problems
Differences with ‘classic’ HPC:
Sparse data: connection matrix has small fraction of
non-zeros
Light computations: walking through graph makes most
algorithms memory bound
Data dependent: process time depends on number of
neighbors, which can be highly unbalanced




